Skip to main content
Log in

Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

A reduction in dissolved oxygen concentration is one of the most important direct effects of nutrient over-enrichment of coastal waters on fishes. Because hypoxia can cause mortality, reduced growth rates, and altered distributions and behaviors of fishes, as well as changes in the relative importance of organisms and pathways of carbon flow within food webs, hypoxia and anoxia can lead to large reductions in the abundance, diversity, and harvest of fishes within affected waters. Nutrient enrichment, however, typically increases prey abundance in more highly oxygenated surface waters and beyond the boundaries of the hypoxic zone. Because of this mosaic of high and low oxygen areas within a system, not only the actual oxygen concentration of bottom waters, but the spatial arrangement, predictability, and persistence of highly oxygenated, high productivity habitats, and the ability of fishes to locate and use those favorable habitats, will determine the ultimate effect of low oxygen on fish populations. Negative effects of hypoxia on fish, habitat, and food webs potentially make both fish populations and entire systems more susceptible to additional anthropogenic and natural stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Aneer, G. 1987. High natural mortality of Baltic herring (Clupea harengus) eggs caused by algal exudates?Marine Biology 94: 163–169.

    Article  Google Scholar 

  • Baden, S. P., L.-O. Loo, L. Pihl, andR. Rosenberg. 1990b. Effects of eutrophication on benthic communities including fish: Swedish west coast.Ambio 19:113–122.

    Google Scholar 

  • Baden, S. P. andL. Pihl. 1996. Effects of autumnal hypoxia on demersal fish and crustaceans in the SE Kattegat, 1984–1991. Scientific Symposium on the North Sea, Quality Status Report, 1993. Danish Environmental Protection Agency, Denmark.

    Google Scholar 

  • Baden, S. P., L. Pihl, andR. Rosenberg. 1990a. Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster (Nephops norvegicus L.).Marine Ecology Progress Series 67:141–155.

    Article  Google Scholar 

  • Bagge, O. 1993. Possible effects on fish reproduction due to the changed oceanographic conditions in the Baltic proper.International Council for the Exploration of the Sea—Collected Papers J:31:1–7.

    Google Scholar 

  • Bagge, O. andE. Nielsen. 1989. Change in abundance and growth of plaice and dab in subdivision 22 in 1962–85. Rapports et Proces-Verbaux des Reunions.Conseil International pour l’Exploration de la Mer 190:183–192.

    Google Scholar 

  • Bagge, O., E. Steffensen, E. Nielsen, andC. Jensen. 1994. Growth and abundance of dab and abundance of plaice in Århus Bay in relation to oxygen conditions 1953–1993.International Council for the Exploration of the Sea—Collected Papers J: 15:1–11.

    Google Scholar 

  • Boddeke, R. andP. Hagel. 1991. Eutrophication of the North Sea continental zone, a blessing in disguise.International Council for the Exploration of the Sea—Collected Papers 1991/E:7:1–29.

    Google Scholar 

  • Breitburg, D. L. 1990. Near-shore hypoxia in the Chesapeake Bay: Patterns and relationships among physical factors.Estuarine, Coastal and Shelf Science 30:593–609.

    Article  CAS  Google Scholar 

  • Breitburg, D. L. 1992. Episodic hypoxia in Chesapeake Bay: Interacting effects of recruitment, behavior, and physical disturbance.Ecological Monographs 62:525–546.

    Article  Google Scholar 

  • Breitburg, D. L. 1994. Behavioral response of fish larvae to low dissolved oxygen concentrations in a stratified water column.Marine Biology 120:615–625.

    Article  Google Scholar 

  • Breitburg, D. L., J. Baxter, C. Hatfield, R. W. Howarth, C. G. Jones, G. M. Lovett, andC. Wigand. 1998. Understanding effects of multiple stressors: Ideas and challenges, p. 416–431.In M. Pace and P. Groffman (eds.), Successes, Limitations and Frontiers in Ecosystem Science. Springer, New York.

    Google Scholar 

  • Breitburg, D. L., T. Loher, C. A. Pacey, andA. Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web.Ecological Monographs 67:489–507.

    Google Scholar 

  • Breitburg, D. L., L. Pihl, andS. E. Kolesar. 2001. Effects of low dissolved oxygen on the behavior, ecology and harvest of fishes: A comparison of the Chesapeake and Baltic systems, p. 241–267.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Breitburg, D. L. and G. F. Riedel. Multiple stressors in marine systems.In E. Norse and L. Crowder (eds.), Marine Conservation Biology: The Science of Maintaining the Sea’s Biodiversity. Island Press, Covelo, California.

  • Breitburg, D. L., K. A. Rose, andJ. H. Cowan, Jr. 1999. Linking water quality to larval survival: Predation mortality of fish larvae in an oxygen-stratified water column.Marine Ecology Progress Series 178:39–54.

    Article  Google Scholar 

  • Brownell, C. L. 1980. Water quality requirements for first-feeding in marine fish larvae. II. pH, oxygen, and carbon dioxide.Journal of Experimental Marine Biology 44:285–298.

    Article  CAS  Google Scholar 

  • Burton, D. T., L. B. Richardson, andC. J. Moore. 1980. Effect of oxygen reduction rate and constant low dissolved oxygen concentrations on two estuarine fish.Transactions of the American Fisheries Society 109:552–557.

    Article  Google Scholar 

  • Caddy, J. F. 1993. Toward a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas.Reviews in Fisheries Science 1:57–95.

    Google Scholar 

  • Caddy, J. F. 2000. Marine catchment basins effects versus impacts of fisheries on semi-enclosed seas.International Council for the Exploration of the Sea—Journal of Marine Science 57:628–640.

    Google Scholar 

  • Chabot, D. andJ.-D. Dutil. 1999. Reduced growth of Atlantic cod in non-lethal hypoxic conditions.Journal of Fish Biology 55: 472–491.

    Article  Google Scholar 

  • Chesney, E. J. and E. D. Houde. 1989. Laboratory studies on the effect of hypoxic waters on the survival of eggs and yolksac larvae of the bay anchovy,Anchoa mitchilli, p. 184–191.In E. D. Houde, E. J. Chesney, T. A. Newberger, A. V. Vazquez, C. E. Zastrow, L. G. Morin, H. R. Harvey, and J. W. Gooch (eds.), Population Biology of Bay Anchovy in Mid-Chesapeake Bay. Final Report to Maryland Sea Grant, Reference Number (UMCEES) CBL 89–141. College Park, Maryland.

  • Chittenden, Jr.,M. E. 1974. Trends in the abundance of American shad,Alosa sapidissima, in the Delaware River Basin.Chesapeake Science 15:96–103.

    Article  Google Scholar 

  • Christensen, P. B., F. Mohlenberg, L. C. Lund-Hansen, J. Borum, C. Christiansen, S. E. Larsen, M. E. Hansen, J. A. Andersen, andJ. Kirkegaard. 1998. The Danish marine environment: Has action improved its state? Conclusions and perspectives of the Marine Research Programme HAV90. Danish Environmental Protection Agency, Copenhagen, Denmark.

    Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Coutant, C. C. 1985. Striped bass, temperature, and dissolved oxygen: A speculative hypothesis for environmental risk.Transactions of the American Fisheries Society 114:31–61.

    Article  Google Scholar 

  • Coutant, C. C. andD. L. Benson. 1990. Summer habitat suitability for striped bass in Chesapeake Bay: Reflections on a population decline.Transactions of the American Fisheries Society 119:757–778.

    Article  Google Scholar 

  • Craig, J. K., L. B. Crowder, C. D. Gray, C. J. McDaniel, T. A. Henwood, andJ. G. Hanifen. 2001. Ecological effects of hypoxia on fish, sea turtles, and marine mammals in the northwestern gulf of Mexico, p. 269–292.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58. American Geophysical Union. Washington, D.C.

    Google Scholar 

  • D’Avanzo, C. andJ. N. Kremer. 1994. Diel oxygen dynamics and anoxic events in a eutrophic estuary of Waquoit Bay, Massachusetts.Estuaries 17:131–139.

    Article  CAS  Google Scholar 

  • Dalla Via, J., G. van den Thillart, O. Cattani, andA. de Zwaan. 1994. Influence of long-term hypoxia exposure on the energy metabolism ofSolea solea. II. Intermediary metabolism in blood, liver and muscle.Marine Ecology Progress Series 111: 17–27.

    Article  CAS  Google Scholar 

  • de Leiva Moreno, J. I., V. N. Agostini, J. F. Caddy, andF. Carocci. 2000. Is the pelagic-demersal ratio from fishery landings a useful proxy for nutrient availability? A preliminary data exploration for the semi-enclosed seas around Europe.ICES Journal of Marine Sciences 57:1091–1102.

    Article  Google Scholar 

  • Deubler, Jr.,E. E., andG. S. Posner. 1963. Response of postlarval flounders,Paralichthys lethostigma, to water of low oxygen concentrations.Copeia 2:312–317.

    Article  Google Scholar 

  • Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–303.

    Google Scholar 

  • Diaz, R. J. andA. Solow. 1999. Ecological and economic consequences of hypoxia. Topic 2, Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico. Decision Analysis Series No. 16, National Oceanographic and Atmospheric Administration, Silver Spring, Maryland.

    Google Scholar 

  • Eby, L. A. 2001. Response of a fish community to frequent and infrequent disturbances in an estuarine ecosystem. Ph.D. Dissertation, Duke University, Durham, North Carolina.

    Google Scholar 

  • Fallesen, G., F. Andersen, andB. Larsen. 2000. Life, death and revival of the hypertrophic Mariager Fjord, Denmark.Journal of Marine Systems 25:313–321.

    Article  Google Scholar 

  • Gee, J. H. andP. A. Gee. 1995. Aquatic surface respiration, buoyancy control, and the evolution of air-breathing in gobies (Gobiidae: Pisces).Journal of Experimental Biology 198:79–89.

    Google Scholar 

  • Gray, J. S. 1992. Eutrophication in the sea, p. 3–15.In G. Colombo, I. Ferrari, V. U. Ceccherelli, and R. Rossi (eds.), Eutrophication of Marine Environments—Population Dynamics of Marine Organisms. 25th European Marine Biology Symposium. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Grimes, C. B. 2001. Fishery production and the Mississippi River discharge.Fisheries 26:17–26.

    Article  Google Scholar 

  • Howell, P. andD. Simpson. 1994. Abundance of marine resources in relation to dissolved oxygen in Long Island Sound.Estuaries 17:394–408.

    Article  Google Scholar 

  • International Council for the Exploration of the Sea. 1996. Report of the ICES Advisory Committee on fishery management. ICES Cooperative Research Report, 221. Food and Agriculture Organization Fisheries Department. GFCMstat Pc. Rome, Italy.

    Google Scholar 

  • Jensen, F. B., M. Nikinmaa, andR. E. Weber. 1993. Environmental perturbations of oxygen transport in teleost fishes: Causes, consequences, and compensations, p. 161–179.In J. C. Rankinand and F. B. Jensen (eds.), Fish Ecophysiology. Chapman and Hall, London, U.K.

    Google Scholar 

  • Jones, J. J. andJ. D. Reynolds. 1999. Costs of egg ventilation for male common gobies breeding in conditions of low dissolved oxygen.Animal Behavior 57:181–188.

    Article  Google Scholar 

  • Keister, J. E., E. D. Houde, andD. L. Breitburg. 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay.Marine Ecology Progress Series 205:43–59.

    Article  Google Scholar 

  • Kersten, M., R. H. Britton, P. J. Dugan, andH. Hafner. 1991. Flock feeding and food intake in little egrets: The effects of prey distribution and behaviour.Journal of Animal Ecology 60: 241–252.

    Article  Google Scholar 

  • Kramer, D. L. 1987. Dissolved oxygen and fish behavior.Environmental Biology of Fishes 18:81–92.

    Article  Google Scholar 

  • Larson, F. 1997. Survival and growth of plaice (Pleuronectes platessa L.) larvae and juveniles in mats ofEnteromorpha sp.—The effects of algal exudates and nocturnal hypoxia. M.S. Thesis, Goteborg University, Göteborg, Sweden.

    Google Scholar 

  • Lenihan, H. S., C. H. Peterson, J. E. Byers, J. H. Grabowski, G. W. Thayer, andD. R. Colby. 2001. Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress.Ecological Applications 11:764–782.

    Article  Google Scholar 

  • Loesch, H. 1960. Sporadic mass shoreward migrations of demersal fish and crustaceans in Mobile Bay, Alabama.Ecology 41:292–298.

    Article  Google Scholar 

  • MacKenzie, B., M. St. John, andK. Wieland. 1996. Eastern Baltic cod: Perspectives from existing data on processes affecting growth and survival of eggs and larvae.Marine Ecology Progress Series 134:265–281.

    Article  Google Scholar 

  • Magnusson, J., O. Vadstein, and G. ærtebjerg. 1998. Critical oxygen levels for demersal fishes and invertebrates.Norwegian Institute for Water Research Report SNO: 3917–3998.

  • McNatt, R. A. 2002. Hypoxia-induced growth rate reduction in two juvenile estuary-dependent fishes. M.S. Thesis, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Mellergaard, S. andE. Nielsen. 1987. The influence of oxygen deficiency on the dab populations in the eastern North Sea and the southern Kattegat.International Council for the Exploration of the Sea—Collected Papers 1987/E:6:1–7.

    Google Scholar 

  • Miller, D. C., S. L. Poucher, andL. Coiro. 2002. Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans, and a bivalve.Marine Biology 140:287–296.

    Article  Google Scholar 

  • National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.

    Google Scholar 

  • Niklitschek, E. J. 2001. Bioenergetics modeling and assessment of suitable habitat for juvenile Atlantic and shortnose sturgeons (Acipenser oxyrinchus andA. brevirostrum) in the Chesapeake Bay. Ph.D. Dissertation. University of Maryland, College Park, Maryland.

    Google Scholar 

  • Nissling, A., H. Kryvi, andL. Vallin. 1994. Variation in egg buoyancy of baltic codGadus morhua and its implications for egg survival in prevailing conditions in the Baltic Sea.Marine Ecology Progress Series 110:67–74.

    Article  Google Scholar 

  • Nissling, A. andL. Vallin. 1996. The ability of Baltic cod eggs to maintain neutral buoyancy and the opportunity for survival in fluctuating conditions in the Baltic Sea.Journal of Fish Biology 48:217–227.

    Article  Google Scholar 

  • Nixon, S. W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnology and Oceanography 33:1005–1025.

    Article  CAS  Google Scholar 

  • Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Limnological Society of Southern Africa 12:43–71.

    CAS  Google Scholar 

  • North, E. W. 2001. Transport and retention of fish early-life stages in Chesapeake Bay: Mechanisms and implications for recruitment. Ph.D. Dissertation, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Officer, C. V., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance.Science 223:22–27.

    Article  Google Scholar 

  • Ohldag, S., D. Schnack, andU. Waller. 1991. Development of Baltic Cod eggs at reduced oxygen concentration levels.International Council for the Exploration of the Sea—Collected Papers 1991/J:39:1–11.

    Google Scholar 

  • Paeri, H. W., J. L. Pinckney, J. M. Fear, andB. Peieris. 1998. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River estuary, North Carolina, USA.Marine Ecology Progress Series 166:17–25.

    Article  Google Scholar 

  • Petersen, J. K. andG. I. Petersen. 1990. Tolerance, behaviour, and oxygen consumption in the sand goby,Pomatochistus minutus (Pallas), exposed to hypoxia.Journal of Fish Biology 37: 921–933.

    Article  Google Scholar 

  • Peterson, J. K. andL. Pihl. 1995. Responses to hypoxia of plaice,Pleuronectes platessa, and dab,Limanda limanda, in the south-east Kattegat: Distribution and growth.Environmental Biology of Fishes 43:311–321.

    Article  Google Scholar 

  • Pihl, L. 1994. Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden.Canadian Journal of Fisheries and Aquatic Sciences 51:321–336.

    Article  Google Scholar 

  • Pihl, L., S. P. Baden, andR. J. Diaz. 1991b. Effects of periodic hypoxia on distribution of demersal fish and crustaceans.Marine Biology 108:349–360.

    Article  Google Scholar 

  • Pihl, L., S. P. Baden, R. J. Diaz, andL. C. Schaffner. 1991a. Hypoxia-induced structural changes in the diet of bottom-feeding fish and crustacean.Marine Biology 112:349–361.

    Article  Google Scholar 

  • Pihl, L., A. Svensson, P.-O. Moksnes, andH. Wennage. 1998. Distribution of green algal mats throughout shallow soft bottoms of the Swedish archipelago in relation to nutrient loads and wave exposure.Journal of Sea Research 41:281–294.

    Article  Google Scholar 

  • Plante, S., D. Chabot, andJ.-D. Dutil. 1998. Hypoxia tolerance in Atlantic cod.Journal of Fish Biology 53:1342–1356.

    Article  Google Scholar 

  • Plikshs, M., M. Kalejs, andG. Grauman. 1993. The influence of environmental conditions and spawning stock size on the year-class strength of the eastern Baltic cod.International Council for the Exploration of the Sea 1993/J:22 1–13.

    Google Scholar 

  • Poulin, R., N. G. Wolf, andD. L. Kramer. 1987. The effect of hypoxia on the vulnerability of guppies (Poecilia reticulata, Poeciliidae) to an aquatic predator (Astromotus ocellatus, Cichlidae).Environmental Biology of Fishes 20:285–292.

    Google Scholar 

  • Purcell, J. E., D. L. Breitburg., M. B. Decker, W. M. Graham, M. J. Youngbluth, andK. Rastoff. 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen environments, p. 77–100.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58. American Geophysical Union, Washington, D.C..

    Google Scholar 

  • Rahel, F. J. andJ. W. Nutzman. 1994. Foraging in a lethal environment: Fish predation in hypoxic waters of a stratified lake.Ecology 75:1246–1253.

    Article  Google Scholar 

  • Rossignol-Strick, M. 1985. A marine anoxic event on the Brittany Coast, July 1982.Journal of Coastal Research 1:11–20.

    Google Scholar 

  • Ruiz, G. M., T. K. Rawlings, F. C. Dobbs, L. A. Drake, T. Mullady, A. Huq, andR. R. Colwell. 2000. Global spread of microorganisms by ships.Nature 408:49–50.

    Article  CAS  Google Scholar 

  • Sanford, L. P., K. R. Sellner, andD. L. Breitburg. 1990. Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay.Journal of Marine Research 48:567–590.

    CAS  Google Scholar 

  • Scholz, U. andU. Waller. 1992. The oxygen requirements of three fish species from the German Bight: CodGadus morhua, plaicePleuronectes platessa, and dabLimanda limanda.Journal of Applied Ichthyology 41:927–934.

    Google Scholar 

  • Schroeder, W. W. andW. J. Wiseman, Jr. 1988. The Mobile Bay estuary: Stratification, oxygen depletion, and jubilees, p. 42–52.In B. Kjerfve (ed.), Hydrodynamics of Estuaries II: Estuarine Case Studies. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Schurmann, H. andJ. F. Stefensen. 1992. Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod,Gadus morhua L.Journal of Fish Biology 41:927–934.

    Article  Google Scholar 

  • Secor, D. H. andT. E. Gunderson. 1998. Effects of hypoxia and temperature, on survival, growth, and respiration of juvenile Atlantic sturgeon (Acipenser oxyrinchus).Fishery Bulletin 96:603–613.

    Google Scholar 

  • Serigstad, B. 1987. Oxygen, uptake of developing fish eggs and larvae.Sarsia 72:369–371.

    Google Scholar 

  • Stachowitsch, M. 1984. Mass mortality in the Gulf of Trieste: The course of community destruction.Marine Ecology 5:243–264.

    Article  Google Scholar 

  • Stott, B. andB. R. Buckley. 1979. Avoidance experiments with homing shoals of minnows,Phoxinus phoxinus in a laboratory stream channel.Journal of Fish Biology 14:135–146.

    Article  CAS  Google Scholar 

  • Thiel, R., A. Sepulveda, R. Kafemann, andW. Nellen. 1995. Environmental factors as forces structuring the fish community of the Elbe estuary.Journal of Fish Biology 46:47–69.

    Article  Google Scholar 

  • Thomas, M. 1998. Temporal changes in the movements and abundance of Thames estuary fish populations, p. 115–139.In M. J. Attrill (ed.), A Rehabilitated Estuarine Ecosystem. Kluwer Academic Publishers, London, U.K.

    Google Scholar 

  • Tinsley, D. 1998. The Thames estuary: A history of the impact of humans on the environment and a description of the current approach to environmental management, p. 5–26.In M. J. Attrill (ed.), A Rehabilitated Estuarine Ecosystem. Kluwer Academic Publishers, London, U.K.

    Google Scholar 

  • U.S. Environmental Protection Agency. 2000. Ambient aquatic life water quality criteria for dissolved oxygen (saltwater): Cape Cod to Cape Hattera. EPA-822-R-00-012. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Wannamaker, C. M. andJ. A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States.Journal of Experimental Marine Biology and Ecology 249:145–163.

    Article  Google Scholar 

  • Weisberg, S. B., H. T. Wilson, P. Himchak, T. Baum, andR. Allen. 1996. Temporal trends in abundance of fish in the tidal Delaware River.Estuaries 19:723–729.

    Article  Google Scholar 

  • Wieland, K., U. Waller, andD. Schnack. 1994. Development of Baltic cod eggs at different levels of temperature and oxygen content.Dana 10:163–177.

    Google Scholar 

  • Wifland, K. andF. Zuzarte. 1991. Vertical distribution of cod and sprat eggs and larvae in the Bormholm Basin (Baltic Sea) 1987–1990.International Council for the Exploration of the Sea—Collected Papers 1991/J:37:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Breitburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002). https://doi.org/10.1007/BF02804904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804904

Keywords

Navigation